COMBINATORICS OF ULTRAFILTERS ON COHEN AND RANDOM ALGEBRAS

نویسندگان

چکیده

We investigate the structure of ultrafilters on Boolean algebras in framework Tukey reducibility. In particular, this paper provides several techniques to construct which are not maximal. Furthermore, we connect analysis with a cardinal invariant algebras, ultrafilter number, and prove consistency results concerning its possible values Cohen random algebras.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Combinatorics of Reasonable Ultrafilters

We are interested in generalizing part of the theory of ultrafilters on ω to larger cardinals. Here we set the scene for further investigations introducing properties of ultrafilters in strong sense dual to being normal. 0. Introduction A lot of knowledge has been accumulated on ultrafilters on ω. In the present paper we are interested in carrying out some of those arguments for ultrafilters on...

متن کامل

Families of Ultrafilters, and Homomorphisms on Infinite Direct Product Algebras

Criteria are obtained for a filter F of subsets of a set I to be an intersection of finitely many ultrafilters, respectively, finitely many κ-complete ultrafilters for a given uncountable cardinal κ. From these, general results are deduced concerning homomorphisms on infinite direct product groups, which yield quick proofs of some results in the literature: the Loś-Eda theorem (characterizing h...

متن کامل

Lie Algebras and Combinatorics

where q is an indeterminate. See [1] for the history, proof,combinatorial interpretation and generalization of (1) and its companion identity. I shall describe the evolution of a program, just completed, for understanding such identities as (1) in terms of Kac-Moody Lie algebras. This program is related to topology, and probably physics, as well as combinatorics. A Kac-Moody Lie algebra ([9], [...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Maharam Algebras and Cohen Reals

We show that the product of any two nonatomic Maharam algebras adds a Cohen real. As a corollary of this and a result of Shelah [14] we obtain that the product of any two nonatomic ccc Souslin forcing notions adds a Cohen real.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Logic

سال: 2021

ISSN: ['1943-5886', '0022-4812']

DOI: https://doi.org/10.1017/jsl.2021.18